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Abstract One of the most frequently studied pattern in ecology is the Species
Abundance Distribution (SAD) that represents the frequency distribution of species
abundances in an assemblage. Two main approaches to displaying such information
have been employed: histograms constructed using exponentially increasing bin
widths as pioneered by Preston (1948), and plots of ranked species abundances.
While both techniques have been extensively used in the investigation of community
ecology hypotheses, the Preston-style species-abundance histogram has become
central to current debates concerning appropriate characterization of the SAD and
the processes generating it. Here we point out an important issue in the Preston
approach that has profound implications to this debate: by employing bins of
exponentially increasing size, the resultant histogram may display a hump-shaped
pattern that is not congruent with the shape of the untransformed distribution.
Moreover, any distribution constructed from log-transformed abundances will
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necessarily reveal at least one internal mode, even when the non-transformed
probability density function is strictly decreasing. We warn against misinterpretation
of such transformed datasets, and suggest that rank-abundance plots, which are
equivalent to the cumulative distribution functions extensively used in other
branches of science, represent a more informative approach as they allow for better
discrimination between a number of probability distributions. Ecologists should be
aware that logarithmic transformation often generates a log-normal-like shape, and
are encouraged to use rank abundance curves to visualize and analyze species-
abundance patterns.

Keywords Commonness and rarity . Community structure . Diversity .

Lognormal distribution .Macroecology .Models . Population size

Introduction

The analysis of species-abundance patterns within communities has a long and
venerable history in ecology. As related by McGill et al. (2007), the first
considerations of this distribution may range back over a century and a half to
observations made by John James Audubon and Charles Darwin. Empirical analysis
of this pattern was initiated by Motomura (1932) and followed by Fisher et al.
(1943), who not only plotted a histogram of species abundances but also produced
scatter plots of log-transformed species richness within a focal abundance class vs.
log-transformed abundances. Preston (1948) pioneered the analysis of species
abundance distributions through histograms with bins of geometrically increasing
width, and this approach remains one of the most common ways that ecological
researchers visualize this pattern. Indeed, the shape of Preston-style histograms has
become a major criterium used by theorists to attempt differentiation between
competing community assembly models (e.g., Harte et al. 1999; Hubbell 2001;
Chave et al. 2002; McGill 2003; Volkov et al. 2003; Chave 2004; Tilman 2004;
Gaston and Chown 2005; Dewar and Porté 2008). Many have focused on the shape
of this histogram, in particular the presence of an internal mode, to test for agreement
between data and theory.

While previous investigations have noted that the binning involved in the Preston
approach leads to loss of information (McGill et al. 2007) and slight differences in
the visualized distributions (Gray et al. 2006), until now none have ever asked
whether this method accurately documents the fundamental shape of underlying
probability distributions. The impetus for this line of inquiry is based upon
investigations of non-ecological abundance distributions reported in Nekola and
Brown (2007), in which all analyzed datasets, spanning a large range of physical and
human social systems, apparently displayed hump-shaped distributions over log-
transformed data.

Here we show that Preston-style binning and any other logarithmic data
transformation inevitably produces internal modes, i.e., hump-shaped or multimodal
distributions, regardless of the distributions of untransformed abundances. Thus, the
apparent ubiquity of hump-shaped species abundance distributions is due to a simple
artifaction.
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Artifactions in Logarithmic Transformation

Standard histograms approximate Probability Density Functions (PDF, Appendix 1):
when constructed over raw (untransformed) data, all bins have the same width, and
the height of each bar is proportional to the number of data points that fall between
the upper and lower limits of each respective bin. In many ecological studies,
following Preston (1948), histograms of species abundance within a community are
based on “octaves”. Instead of equally-spaced bins, bin width varies based on a
doubling rule (each subsequent bin is twice as wide as its predecessor) and then is
presented as a standard histogram with equal-breadth bars. In essence this process is
equivalent to first log2 transforming the data and then constructing a histogram. The
resulting bar chart is thus equivalent to a standard histogram over log2-transformed
data (Fig. 1). While binning of any sort always results in a loss of information
(Williams 1964; Gray 1987; Magurran and Henderson 2003; Gray et al. 2006), here
we additionally consider effects attributable to logarithmic data transformation
independent of binning.

Logarithmic transformation of any data necessarily generates an internal mode on
any probability density function. Generally speaking, this happens because a
logarithm maps the interval from zero to infinity on the interval between minus and
plus infinity. Any probability density function is, by definition, finite integrable,
which means that the area below the curve is finite (usually set to one) and larger
than zero (see Appendix 1). These conditions can be met only if both tails approach
zero and if there is at least one peak somewhere between the infinities (Fig. 2a).

Fig. 1 Preston-Gray’s binning (a) and binning of logarithmically transformed abundances (b) are
equivalent. Having numbers of species 10, 9, 6, 3, 3, 2, 2 within seven abundances classes from 1 to 7,
respectively (steps 0), we can either follow Preston i) and bin them into exponentially (base 2) widening
bins (step 1 in a) an then show the bins as equal sized (step 2 in a); or ii) first logarithmically transform
abundances (using base 2 we get 0; 1; 1.58; 2; 2.32; 2.58; 2.81, respectively; step 1 in b) and bin them into
bins 0–1 (incl 0 excl 1), 1–2 (incl 1 excl 2) and 2–3 (incl 2 excl 3) (step 2 in b). Note that log28=3 and
species with abundance of eight would thus fall into the next bin 3–4. Since both processes produce the
same results, we can see all Preston-Gray’s binning as a histogram constructed over logarithmically
transformed abundances
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However, this peak may not always be observable, particularly in situations when
minimum abundance is constrained (Fig. 2b). Note that this minimum abundance
value is not necessarily comparable with a “veil line” (see Discussion).

Given that PDFs over log-transformed data must possess an internal mode,
we now turn our attention to the underlying mathematical mechanism. Probability
density is proportional to the occurrence frequency of an observed value: higher
probability densities correspond to higher occurrence frequencies (p ffi f = nþ 1ð Þ,
where π is probability density, f is frequency, and n is the number of observations).
The frequency can be estimated as a reciprocal value of a distance between two
neighboring observations ranked along the rare-common gradient (frequency ffi
aiþ1 � aið Þ�1). Since i) any PDF over values between zero and infinity becomes
sooner or later decreasing and ii) any logarithm shortens the distance between two
high neighboring abundances but enlarges distance between two low neighboring
abundances, these two counteracting forces must generate at least one peak in a PDF
over log-transformed data. Expressing this mathematically (Fig. 2c; Appendix 2) we
can show that

g yð Þ ¼ b yf b yð Þln b ðEqn:1Þ
where g(y) is a PDF over log-transformed data, y is the log-transformed abundance
of a ( y = logβa), f (a) is a PDF over non-transformed data, β is the base of the
chosen logarithm and ln is the natural logarithm. The term β y represents the
logarithmic force that creates the internal mode. Note that this force usually cancels
all peaks on the original distribution (f(a)), so the generation of internal modes in a
log-transformed PDF is the simple consequence of logarithmic transformation.
Since for this reasoning we do not need the assumption of binning, this artifaction
is not limited to histograms.

Fig. 2 Probability density function (PDF) over data that range from minus infinity to plus infinity has
always at least one peak (a) unless there is a lower boundary (log of minimum abundance), which can veil
the peak (b). It is because the area below PDF is, by definition, always finite. The peak originates (c) even
when PDF is strictly decreasing. The area between points ai and bi (labeled as Pi) is the probability that
an x falls between those two points. So, transforming data logarithmically (dotted arrows), the focal
Pi must be retained for the area between log ai and log bi. More formally, Pi ai � x < bið Þ ¼
Pi log ai � log x < log bið Þ (for details see Appendix 2). Now, as ai approaches zero, the distance between
log ai and log bi increases. Thus, the lower is ai, the lower is the value of the PDF over the transformed
data. This mechanism deforms the left side of the PDF toward lower values and creates a mode as well as
lifts the right tail and makes it heavier
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The hump-shaped PDF over logarithmically transformed abundances thus says
nothing about the existence of an internal mode in a species abundance distribution,
and the presence of an internal mode can be considered a typical example of
artifaction sensu Palmer (2008, this issue).

An Alternative Approach: Rank-Abundance Plots

MacArthur (1957) and Whittaker (1965) initiated a different approach to visualizing
the abundance distribution whereby the proportion of each species contribution to
the total assemblage was plotted against the rank order of that species from the most
to least common. Whittaker (1965) termed this plot a “dominance-diversity” curve
(“rank-abundance” plot is a widely used, and actually more appropriate synonym),
and it represents the other common way that ecologists have pictured the species
abundance distribution (e.g. Hubbell 2001; McGill et al. 2007). This visualization
technique does not result in a loss of detail or information because it does not gather
abundance classes into bins and thereby shows every single abundance. Moreover,
because proportional rank (i.e. normalized to the interval 0–1) estimates the probability
that a randomly drawn abundance is less than or equal to that of the focal abundance,
rank-abundance plots with untransformed axes are identical to the empirical
cumulative distribution functions that have long been used in statistics.

Rank-abundance plots are easy to interpret in terms of presence or absence of an
internal mode and symmetry and shape of the corresponding histogram constructed
over the data. A clear logical correspondence exists between the rank-abundance
plots and histograms generated from a given dataset (Fig. 3d). The internal mode of
the histogram is easy to see as an inflection point on the rank plot (the point when
concavity becomes convexity; triangle in Fig. 3d), and the potential symmetry of the
distribution is represented by the symmetry around this inflection. Even if the
inflection point does not exist in raw data, logarithmic transformation produces it —
and thus the internal mode in the probability density function.

In the abundance distribution literature the rank-abundance plot is often presented
with a logarithmically transformed abundance axis, which emphasizes the rare
species part of the distribution. Zipf (1949) pioneered rank plots with logarithmic
transformation applied to both axes. Astronomers, geologists, economists, sociolo-
gists, statistical physicists, linguists and complexity scientists frequently use this
expression (Newman 2005).

Case Study

We demonstrate this theory in the case of an exponential distribution
f xð Þ ¼ 0:1e�0:1x; x�0ð Þ, the probability density function of which is strictly
decreasing (Fig. 3). Neither the raw histogram (Fig. 3a) nor rank plot (Fig. 3c)
shows any internal mode. The rank plot is strictly convex — and thus without any
inflection. However, when data is log2-transformed, the analytical form of the PDF
becomes g yð Þ ¼ 0:1 � 2ye�0:1�2y ln 2 (y is any real number; see eqn 1, Fig. 2c and
Appendix 2), which is a unimodal curve approaching zero in minus and plus infinity.
The mode is at abundance of 10 individuals, i.e., at approximately 23.32. The
Preston-style histogram accurately represents the log2-transformed PDF, as does the
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rank-abundance plot, which shows an inflection point (i.e., mode) at abundance of
about 23. Data for all histograms and rank plots (Fig. 3) were randomly drawn (500
data points) from the exponential distribution (Appendix 3).

Discussion

The theory presented here clearly documents that logarithmic transformation usually
generates an artificial internal mode. If the internal mode does not occur, it only
means that i) the sample was too small to sample a sufficient number of low

Fig. 3 Logarithmic transformation of data which follow an exponential distribution (a, c) creates hump
shaped distribution (b, d). a Histogram (squares and columns) constructed over 500 abundances randomly
drawn (Appendix 2) from the exponential distribution f xð Þ ¼ 0:1e�0:1x; x�0 (full line). The randomly
drawn abundances are plotted in a rank plot (dots in c). (Note that the axes are replaced with each other in
comparison to the usual rank-abundance plots in order to match the histogram above. This position of the
axes also conforms to the customary orientation of a cumulative distribution function.) The number of dots
within the corresponding bin (dotted lines) is proportional to the height of the corresponding column of the
histogram in ‘a’. Thus, strictly convex rank plot means strictly decreasing histogram. b The exponential
distribution from ‘a’ for log2-transformed data (i.e., g log2 xð Þ ¼ 0:1xe�0:1x ln 2; full line; for explanation
see Fig. 2 and Appendix 1) and histogram over the same sample (following methods in Gray 1987). d The
rank plot ‘c’ with a log2-transformed abundance axis. The highest probability density is reflected by
steepest slope of the rank plot. The modal bin in b corresponds to the inflection point on the rank plot
(triangle)
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abundance events; ii) the modal abundance occurred below the minimum possible
abundance (usually one); or iii) there is a veil line, which prevents low abundances
from being observed. The apparent ubiquity of hump-shaped abundance
distributions over log-transformed data thus seems likely artifaction. Such
artifactions are not limited to the analysis of species abundances, but are
possible in any study analyzing log-transformed data, such as the analysis of
species range sizes reported in Gaston and He (2002). In fact, this simple
mathematical process is likely the general mechanism that underlies the
omnipresence of hump-shaped frequency histograms reported by Nekola and
Brown (2007). It is beyond the purview of this paper to interpret this finding in
terms of current debates regarding models of community assembly. However, the
shape of the many published examples of lognormal-like SADs in the ecological
literature over the last 60 years may well tell us more about the process of log-
transformation than it does about the actual shape of these distributions or the
ecological processes governing them.

However, to dismiss all use of logarithmic binning as a visualization
technique would be a mistake, for every kind of visualization has its own
strengths and weaknesses. Histograms and rank plots of raw data properly
demonstrate the proportional changes across various abundance classes, but in
so doing tend to emphasize statistical fluctuations within high abundance
classes while at the same time obscuring fine-scale variation at low abundances.
This is particularly important given that assemblages are typically dominated
by low-abundance species. While Preston-style histograms and rank plots
of log-transformed data generally create artificial internal modes, they can also
i) reveal whether data point densities change at the same rate to the left and right of
this artificial mode (thus the symmetry of distributions over log-transformed data);
and ii) emphasize abundance variation in lower abundance classes. The observed
enrichment of rare species in many Preston-style histograms is thus neither an
artifact nor artifaction sensu Palmer (2008), but reflects a genuine pattern.
Differences between log-transformed distributions also describe real discrepancies
between datasets. An example of this is provided by McClain and Nekola (2008)
who used log-linear modeling to compare log-binned (i.e., with exponentially
increasing bin widths) abundances of species and individuals across body size in
Gastropods.

While log-transformation and Preston-style binning can be used to accurately
document asymmetries within and differences between distributions, it is vital
to remember that such transformed data cannot properly characterize the shape
of the raw probability distribution function. Other analytical approaches thus
must be used to achieve this goal. Rank-abundance plots, either with
transformed or untransformed axes, allow all degrees of freedom in the original
dataset to be utilized (Newman 2005), and a large number of distributions to be
included within a single graph, aiding in the easy comparison of observed or
simulated datasets. When untransformed, such plots properly show the
proportion of species richness of neighboring abundance classes as well as
their rates of change. Doubly log-transformed rank-abundance plots can be used
to reveal deviations from a power-law distribution, while semi-log plots can be
used to reveal deviations from a log-normal distribution.

Artifactions in species abundance distributions 265



Appendix 1: Probability Density Functions (PDF)

Let us start with definition of probability density: “probability density equals the
probability that a species of given abundance falls within a given bin of unit width”.
Since a bin of unit width is often so wide that it veils variation in probability densities
of various abundances, we define the probability density, more precisely, as a
probability over an interval (the probability is normalized by the interval size) where
interval size approaches zero. We usually estimate the density as the probability over
some small reasonably observed interval divided by the size of the interval. Note that
probability over an interval is proportional to number of species which fall into the
interval. The sense of probability density is to get as fine detail on probability of
occurrence of a focal abundance class within an assemblage as possible; in other
words, the sense is to have a variable whose integral (i.e., infinitesimal summing)
across an interval equals the probability over the interval. Integrating the probability
density across all possible abundance classes thus gives one (i.e. all species of an
assemblage normalized by all species of the assemblage). Changes of probability
density with abundance classes show how probability of occurrence of particular
abundances vary within the focal assemblage. A histogram is then a rough
approximation to the probability density function and requires bars with equal widths.
If bars are not equal, their height must be normalized by their width according to the
definition of the probability density (see above and also Newman 2005).

Appendix 2: Probability Density Function Over Log-Transformed Data

Aim To derive the relationship between a probability density function (f(x)) and the
corresponding probability density function for logarithmically transformed axis
(g logb x
� �

, where β is a base).

Solution Since a � x < b ) logb a � logb x < logb b, the probability that an x falls
between any a,b equals the probability that logb x falls between logb a and logb b (i.e.,
P a � x < bð Þ ¼ P logb a � logb x < logb b

� �
; see also Fig. 2). Since b� að Þf xð Þ !a!b

P a � x < bð Þ and logb b� logb a
� �

g logb x
� � !a!b

P logb a � logb x < logb b
� �

, then
b� að Þf xð Þ !a!b

logb b� logb a
� �

g logb x
� �

. Replacing a with x and b with x+Δx,
we get

ln xþΔxð Þ � lnx

lnb
g logbx
� �!Δx ! 0

f xð Þ xþΔxð Þ � xð Þ: ðEqn:S1Þ

(Note that logb x � ln x=ln b:)
Therefore,

g logbx
� � ¼ f xð Þlnb lim

Δx!0

Δx

ln 1þΔx=xð Þ ðEqn:S2Þ

which, using the l’Hospital theorem, is

g logbx
� � ¼ xf xð Þlnb; where x � 0: ðEqn:S3Þ
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Or, replacing logb x with y,

g yð Þ ¼ b yf b yð Þlnb; where y 2 < i:e: y is a real numberð Þ: ðEqn:S3Þ

Appendix 3: Random Sample from an Exponential Distribution

The probability density function of an exponential distribution follows f xð Þ ¼ be�bx,
where b>0. Cumulative distribution function then follows F x < xð Þ ¼
b
R x
0 e

�bxdx ¼ 1� e�bx. Distribution function always maps regular distribution onto
the distribution in question. Thus any x ¼ �ln 1� yð Þ=b where y is sampled from
regular distribution between 0 and 1 is a sample drawn from the exponential
distribution. In short, this transformation maps a point x; f xð Þf g into the point
logβ x; xf xð Þ ln β� �

.
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